

Stress da caldo : strategie di razionamento e qualità degli alimenti

Andrea Formigoni

andrea.formigoni@unibo.it

Bressandivo (Vi), 12.10.2024

Stress da caldo in Italia

- Calo latte: -0.91, -1.16, e -1.27Kg/d per le bovine in 1°, 2°e 3° lattazione rispettivamente
- Calo proteine: da -0.02 a -0.10% e da -0,01 a -0,07 kg/d
- Calo grasso: -0,02 a -0,07 kg/giorno

(Bernabucci et al., J.D.S. 2014)

Un problema anche per le asciutte

- Aumento incidenza delle patologie tipiche del post-parto
 - -> uso di farmaci
- Vitelli meno vitali
- Qualità del colostro peggiore
 - Problemi di svezzamento
- Minore produzione di latte

Stress da caldo: quando?

- Le bovine che producono più latte sono più sensibili al caldo
 - >35 kg/d = circa 5 °C in più
- Valore critico THI > 65 o THI =/>
 68 per oltre 17h/d (Collier (2012)
- A 19-20 °C, con umidità relativa > 60%, le vacche ad alta produzione (> 35 kg/d) sono già in stress
- "t e Umidità vanno misurate in stalla ad «altezza vacche»

Temperatura, °C	Umidità relativa, %					
	60	70	80	90		
16	60.2	60.3	60.5	60.6		
17	61.6	61.8	62.1	62.3		
10	63 U	62.3	62.7	64.0		
19	64.4	64.8	65.3	65.7		
20	65.8	66.4	66.9	67.5		
21	67.2	67.9	68.5	69.2		
22	68.6	69.4	70.1	70.9		
23	70.0	70.9	71.7	72.6		
24	71.4	72.4	73.3	74.3		
25	72.8	73.9	74.9	76.0		
26	74.2	75.4	76.5	77.7		
27	75.6	76.9	78.1	79.4		
28	77.0	78.4	79.7	81.1		
29	78.4	79.9	81.3	82.8		
30	79.8	81.4	82.9	84.5		

Hanno caldo quando per noi è ancora fresco!!!!

Stress da caldo

- La risposta adattativa è rappresentata da diverse azioni fra cui minor ingestione di alimenti e maggiore fabbisogno di acqua
 - BE negativo, perdita peso, anestri, cisti ovariche, infertilità, minor riposo= > problemi podali, immunodepressione, > incidenza mastiti
- Alterato comportamento alimentare e digestivo

Temperature (°C)	Maintenance Requirements (% of requirements at 20°C)	Dry Matter Intake for 27 kg of milk + extra maintenance	Expected Dry Matter Intake kg	Expected Milk kg	Milk / Intake
20	100	18.2	18.2	27.0	1.48
25	104	18.4	17.7	25.0	1.41
30	111	18.9	16.9	23.0	1.36
35	120	19.4	16.7	18.0	1.08
40	132	20.2	10.2	12.0	1.18

Adapted from NRC, 1981. 20°C is roughly thermoneutral for cattle.

Effetto dell'uso di acqua (*) per il raffrescamento (Chen et al., JDS, 2016)

Table 2. Cattle responses (n = 9 pairs) when provided access to 0, 1.3, or 4.9 L/min intermittent sprinklers above the feed bunk

	Sprin	Sprinkler flow rate (L/min)			2 2	
Measure	0	1.3	4.9	SEM	Overall P-value	
24-h body temperature (°C)						
Mean	38.9	38.6†	38.5*	0.10	0.072	
Maximum	39.7	39.4	39.4	0.13	0.224	
Time spent at the feed bunk				(B)		
Total time (h/24 h)	5.4	5.9	5.9	39.6 -	. * *	
Bout length (min/bout)	22.2	27.3**	28.1**		0 L/min 1.3 L/min * T †	
Bout number (per 24 h)	15.6	13.6*	13.1**	© 39.2 -	4.9 L/min + † Î 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Jт
Time spent at the water trough					i/11_111	11
Total time (h/24 h)	1.3	1.0†	0.8*	Body temperature	4	-H
Bout length (min/bout)	3.7	3.3	2.8	£ 1	J-I - TV4 F4-VIY IY	4 £
Bout number (per 24 h)	20.7	18.0*	18.0*	§ 38.4 1		
Time spent lying			DEATHER)	8 1	1. 7111	
Total time (h/24 h)	11.9	12.2	12.1	38.0	<u> </u>	-
Bout length (min/bout)	70.0	67.7	68.9	0 2	4 6 8 10 12 14 16 18 20	22
Bout number (per 24 h)	10.9	11.2	10.9		Time of day (h)	
DMI (kg/24 h)	27.9	29.0	29.1	0.8	0.128	
Milk yield (kg/24 h)	42.6	46.3**	45.9**	1.1	0.009	

 $\dagger P < 0.10; *P < 0.05; **P < 0.01$: Differences in each measure between the sprinkler treatments and the control.

Acqua per 3 min. seguita da 9 min. di ventilazione per 24 ore continue THI: da 64 a 82. esperimento condotto nel 2013 in California (U-Davis)

Alimentazione e caldo

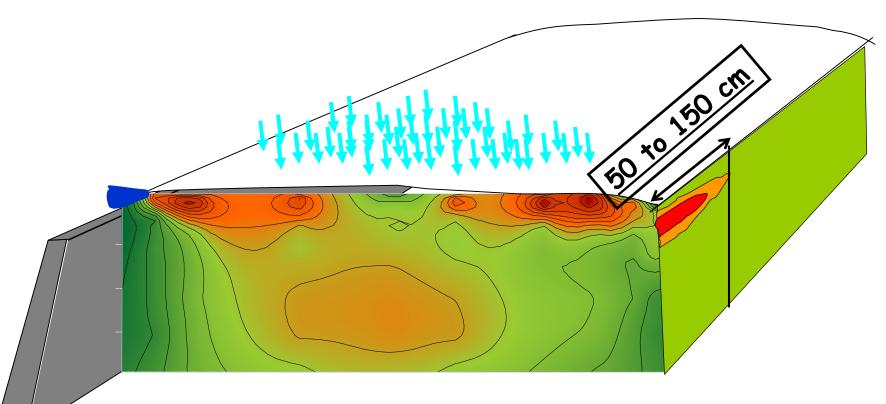
- Acqua: n°1
 - Fabbisogno di 6-8 lt/d per kg SSI
 - Disponibilità, facile accesso, funzionalità e pulizia degli abbeveratoi
 - 30-40 min/d. dedicati all'abbeverata
 - Qualità: parametri chimici, fisici e microbiologici

Favorire l'ingestione

- Usare SOLO alimenti SALUBRI
 - Foraggi: soprattutto insilati
 - Mangimi semplici e composti
 - In particolare quelli ricchi di lipidi
 - Integratori
 - In particolare quelli vitaminici
 - Forte sensibilità a caldo e umidità

Punti critici: i sili dei mangimi

- Controllo integrità e tenuta
- Se esposti al sole, la °t interna può superare i 45/50°C
- Frequenza di svuotamento (max.15-20d)
- Pulizia completa e fumigazione (4 x anno)
- In estate preferire mangimi in pellet e addizionati di antimuffa



La corretta gestione degli insilati

L'aria può penetra anche attraverso i teli e nelle aree periferiche fino a .. (Borreani, 2014)

La velocità di avanzamento nella massa in estate non dovrebbe essere inferiore ai 25-30 cm/d.

STUDIORUM SOLOGAMAN

Caratteristiche della fibra di rotoballe fasciate con telo resistente all'O₂

		Controllo	Trattato
aNDFom	%, s.s.	49,00	49,30
ADL	%, s.s.	12,06	11,99
uNDF	%, s.s.	28,00	26,00
pdNDF	%, s.s.	21,00	23,3
dNDFom 30h	%, aNDFom	33,10	36,40
dNDFom 240h	%, aNDFom	42,20	47,10

DIMEVET, dati non pubblicati

Gestione delle Greppie

- Le vacche sono abitudinarie
 - Distribuzione regolare e + frequente
- Controllo delle fermentazioni secondarie
 - Pulizia greppie; uso di antifermentativi
- Evitare/Limitare il sovra-affollamento
 - Transizione e fresche in particolare
- MAI GREPPIE VUOTE
 - Avvicinare frequentemente la razione
 - Specie nelle ore notturne!
 - Residui 4-5% dello scaricato

Gestione delle Greppie

- Bach et al., JDS, 2008
- 47 allevamenti con genetica simile e stessa razione a piatto unico
 - Produzione media = 29.5 kg/d; Range: 20 to 34 kg/d
- **56%** della variabilità dovuta a due fattori gestionali
 - Somministrazione per avere residui (latte 29.0 vs 27.5 kg/d)
 - Avvicinamento alimento in greppia (latte 28.9 vs 24.9 kg/d)
- Cavallini et al., JDS, 2018
 - Razione a volontà vs ristretta con o senza fieno lungo

	Disponibilità					
Parametro	24	4h	19h			
	F+	F-	F+	F-		
SSI	27.85	24.56	24.05	23.65		
SS da Unifeed	27.36	24.60	23.27	23.71		
SS da Fieno	0.55	-	0.70	_		
Latte ECM	40.26	38.23	39.13	36.84		

Un buon investimento!!

Importanza della qualità dei foraggi

- Con foraggi di migliore qualità le bovine aumentano l'ingestione
- I foraggi di migliore qualità apportano più nutrienti ed è possibile formulare razioni che apportino meno mangimi per produrre le stesse quantità di latte
- Con maggiori quantità di foraggi si corrono meno rischi di anomalie fermentative ruminali e intestinali
- Grandi vantaggi: cosa fare?
 - Genetica delle piante e buone pratiche agronomiche
 - Raccolta di piante «giovani»
 - Sistemi di conservazione attenti

Importanza della qualità della fibra dei foraggi

Fiber digestibility (*)		High	High	Low	Low
uNDFom	% DM	10,8	9,4	11,0	9,5
Forage	% DM	55.4	45.4	47.4	38.7
Intake	kg/DM/d	29.7 ^A	29.2 ^A	24.5 ^B	24.5 ^B
Milk	kg/d	41.2	40.0	39.1	39.2
Milk (4% Fat)	kg/d	37.8	36.5	34.8	36.0
Rumination time	Min./d	487 ^A	499 ^A	390 B	410 ^B
Rumen pH < 5.8	Min./d	674	903	733	904
Rumen pH < 5.5	Min./d	122	329	257	323

(*) dNDFom 24h: High 40,5%; Low 31,5%

Effect of undigested neutral detergent fiber content of alfalfa hay on lactating dairy cows: Feeding behavior, fiber digestibility, and lactation performance

M. Fustini,*¹ A. Palmonari,*^{1,2} G. Canestrari,* E. Bonfante,* L. Mammi,* M. T. Pacchioli,† G. C. J. Sniffen,‡ R. J. Grant,§ K. W. Cotanch,§ and A. Formigoni*

Formulazione delle razioni

- Assicurare adeguati apporti di fibra da foraggi
 - aNDFf > 20% della SS; uNDF: < 12-13% SS
- Limitare la quota di amidi e rumino-degradabili
 - 25/27 e 14/16% della sostanza secca della razione
- Zuccheri (7-8% SS razione) e Lipidi rumino-inerti
- Minerali e tamponi
 - Aumentano i fabbisogni di K, Na, Mg, Ca
 - DCAD: + 35 meq/kg SS
- Adeguare gli apporti di proteine, isoacidi e amminoacidi
 - Soddisfare i fabbisogni dei batteri ruminali per aumentare dNDF
 - Soddisfare i fabbisogni metabolici e della mammella
- Modulatori delle fermentazioni ruminali

Conclusioni

- Bisogna prepararsi per tempo
- Produrre e conservare i migliori foraggi che andranno utilizzati proprio nei momenti più critici soprattutto per le vacche in transizione e nel primo periodo della lattazione
- Cominciare a preoccuparsi del caldo per le vacche più produttive già a partire da aprile-maggio
 - Avere in stalla sistemi efficaci di rilevamento del THI giornaliero....
- La corretta gestione delle greppie è determinante

Grazie e... buon lavoro!!

